改变Kp, Ki, 和 Kd的值对机器人运行情况的影响
在优化PID的过程中,上面说明的方法和表格是一个好的开始。有时,了解一下增加(或降低)三个K值中的一个会有怎样的结果,也是非常有帮助的。下表在很多网页上都能找到,这个版本来源于wiki——PID控制器的网页。
增加参数值的影响 | Parameter 参数 | Rise time 响应时间 | Overshoot 超调 | Settling time 稳定时间 | Error at
equilibrium 静态误差 | Kp | 减少 | 增加 | 变化小 | 减少 | Ki | 减少 | 增加 | 增加 | 消除 | Kd | 不确定(小的增加或减小) | 减少 | 减少 | 无 |
“响应时间”是指机器人确定误差的时间,在我们的例子中,是指机器人在离线以后,需要多少时间能回到线的边缘。响应时间主要由Kp控制。Kp值变大,机器人返回线的速度变快,响应时间就减少。Kp过大,会造成机器人超调。
“超调”是指机器人在响应误差时,会越过线的边缘多远。例如,如果超调较小,当机器人想回到线的左边时,就不会摆动到线的右边去。如果超调较大,机器人在纠正误差时,就会摆动过大,超过线的边缘。超调受 Kd影响最大,但 Ki 和Kp对它的影响也颇强。通常情况下,纠正很大的超调,你需要增大Kd值。还记得我们第一个非常简单的巡线机器人吗,除了左转和右转,它不会做任何事,这个巡线机器人就会产生非常大的超调现象。
“稳定时间”是指机器人在发生一个大的变化时,需要多长时间才能稳定下来。在我们巡线的例子中,机器人遇到一个转弯就会发生较大的变化。当机器人对曲线做出响应,它会纠正误差,并产生一些超调,然后机器人会以另一个方向的超调来纠正当前的超调,然后再纠正这个超调......你明白了吧。当机器人对误差进行响应时,它会围绕期望位置进行摆动。“稳定时间”就是这个摆动被抑制到0的时间。Ki 和 Kd都对稳定时间有很强的影响,Ki越大,稳定时间越长;Kd越大,稳定时间越短。
“静态误差”是指系统在不受干扰的情况下运行所保持的误差。对于我们的巡线机器人来说,当机器人走了很长一段直线后,这个误差会被抵消掉。P控制器和PD控制器经常会被这种误差搞垮。增加Kp 值会降低它的影响,但会加大机器人的摆动。P控制器和PD控制器在平衡状态下会有一个恒定的误差,因此经常会在其中增加I控制,和加大Ki的值。(这是假定,当机器人巡线时,你更关注小的系统误差。这就意味着,机器人会稍微向一边或另一边偏移)
|